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The decay of high-velocity laminar jets of extremely viscous liquids is caused by the 
growth of bending (transverse) disturbances due to the dynamic action of the surrounding air, 
the pressure of which is greater on concave parts than on convex parts of the jet surface. 
This type of process has been studied for Newtonian fluid jets [i, 2] by means of the quasi- 
one-dimensional asymptotic system of equations for the dynamics of liquid jets [i, 3] and by 
an approximate energy-balance analysis [i]. In this article we generalize the theory of [i, 
3] to the case of jets of nonlinear viscous (power-law) liquids whose viscosity depends on 
the strain rate. 

i. We consider the energy balance of a jet of circular cross section in a countercurrent 
airflow, assuming that its bending under the action of transverse disturbances is planar. We 
neglect friction forces and drag effects exerted on the jet by the air, so that a plane bend ~ 
ing disturbance of the jet axis can be approximately represented by a single harmonic (even 
in the nonlinear growth stage, as long as the amplitude of the disturbance is not too great: 

H = A(t) sin (%s/ao), ( 1 . 1 )  

where X is the dimensionless wave number (X = 2vao/l, I is the wavelength of the disturbance), 
ao is the initial radius of the jet, t is the time, and s is the coordinate measured along the 
axis of the undisturbed jet. 

The work L done in time dt by a linearly distributed aerodynamic ','lift" force q, applied 
to a half-wavelength of the disturbed jet and the kinetic energy E of this segment of the jet 
are given by the relations 

~ao/Z =Zao/Z 
L =  qnH,tdsdt, E = ~ H~tT, ds, ~=]fll+Hy~ (1.2) 

0 0 

(P i s  t he  d e n s i t y  o f  t h e  l i q u i d ) .  

The e x p r e s s i o n s  f o r  t h e  p r o j e c t i o n  qn o f  the  ae rodynamic  f o r c e  o n t o  t he  normal  t o  t h e  j e t  
a x i s  and t he  c r o s s - s e c t i o n a l  a r e a  f o f  the  j e t  have  the  form [1] 

r -~176 1 
L o .J 

where p~. is the density of air and Uo is the jet velocity. 

The extension of the jet in flexure causes a variation of the surface energy E1---- 

cz I 2~a%ds (c~ is the coefficient of surface tension of the liquid). 
0 

Making use of the relation Oa2%/at = 0, which follows from the incompressibility of the 
liquid, we find the variation of the surface energy of the jet in time dr: 

~ % / ~  

dE, == ~ .t' �9 ~,~adsdt. (i. 4) 
0 

Dur ing  t he  g rowth  of  t he  b e n d i n g  d i s t u r b a n c e s  t h e  j e t  i s  s u b j e c t e d  t o  u n i a x i a l  t e n s i o n  
i n  the  f i r s t  a p p r o x i m a t i o n .  The r a t e  o f  r e l a t i v e  e l o n g a t i o n  o f  a l i q u i d  l i n e  y = c o n s t ,  z = 
c o n s t  p a r a l l e l  to  t h e  j e t  a x i s  (y and z a r e  measured  f rom the  c ~ n t e r  o f  t he  c r o s s  s e c t i o n  
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along the normal n and the binormal b to the jet axis; T is the unit tangent to the axis), 
i.e., the strain rate, is expressed as follows in the long-wave approximation: 

DT~ [(k-1 -- y) o],, :-.: ~_,)~ t - -  Icy ~ 
= ( k - i _  v) o , -5-" (1.5) 

Here k is the curvature of the jet axis, ~ is the angle between the jet cross sections cor- 
responding to the longitudinal coordinates s and s + ds: 

,,, : IL , , / ( t  + IC',) (1.6) 

and we have invoked the obvious equality k-*~ = Ads. 

The incompressibility condition implies 

O . .  --= Obb == - - ( t / 2 )O , , .  ( 1 . 7 )  

The rheological law for nonlinear viscous liquids is [4] 

6" = --pg* + 2K[ISp(D*-") ]("-J),,2 D*, (i. 8) 

where o* and D* are the stress and strain-rate tensors, g* is the metric tensor, p is the 
pressure, and K and n are the rheological parameters of the liquid. The case of a Newtonian 
fluid corresponds to K = p (p is the viscosity) and n = i. 

Using (1.8), on the basis of (I. 7) we find expressions for the stresses acting in the 
jet subjected to uniaxial tension in the course of bending: 

( l . a  = Obb . . . .  ( ( z / a ) ( 1  - -  l~y),  ( 1 . 9 )  

(lz. t : - - ( (X /a) ( ] .  - -  k y )  -~ 3 (*~+t)/2 K D ~  " sgn D~4. 

The latter expressions in conjunction with (l.1) and (1.5)--(1.7) enable us to calculate in 
the long-wave approximation the work L, of the internal forces in the designated element of 
the jet in time dt: 

L,---:[ J ( (hTDT~--o.nD, , /2--ObbD~,: '2)(I  li'y) dS t ~ d s d t = 3 - T - K T { A ' ~ ) o .  Y]YI""F(e:n)dSdt'(I'IO)D 

F (~, n) == J" [ sin x + e cos" x r+~dx, 
0 

where dS is an element of area of the jet cross section D and e =--A/y. 

The balance of energy indicates that the work of the distributed aerodynamic force is 
equal to the sum of the increments of the kinetic and surface energies of the jet and the 
work of the internal forces. We emphasize that in the energy balance the rheological prop- 
erties of the liquid govern only the work of the internal forces. 

The work of the distributed aerodynamic force and the increments of the kinetic and 
surface energies of the jet are readily calculated in the long-wave approximation by means 
of relations (1.1)--(1.4). In the case of small bending disturbances (]el ~ A/no <<I) the 
work L~ is determined mainly by the work of the moment of the internal stresses in rotation 
of the jet cross section, while the work of the longitudinal force in the cross section dur- 
ing elongation of the jet axis yields only a small correction. Accordingly, we obtain the 
following asymptotic representation for F(e, n) : 

Forming the energy balance and taking (i. Ii) into account, we carry out the integration over 
the cross section of the jet in (i. I0) and arrive at an equation for the amplitude of the 

bending disturbance A(t): 

- -  [ f 9" ~ "  

A"--!-. ~:-3 ~ K,,.:.tXe, 2[[.lJ,,-FZt/r..,,,--~-311~ 2 ]1" i ~ ] j ~ , t  (Ahn, + 
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, , ) ,l%2[ ~ p,U~ :,~0. (1.12) 
1,4 P4 

Here the prime signifies differentiation with respect to t; the second term on the left de- 
scribes the influence of the moment of the stress in the jet cross section in bending, and the 
third term describes the influence of the longitudinal force in the cross section on the 
bending process. For n = i and K = ~ Eq. (1.12) goes over to the equation obtained in [i] 
for the amplitude of the transverse disturbances of a Newtonian fluid jet: 

3 I.L,,%L f 9 ~ -.A X (p~ ==0. (1.13) A" i Tp% ' 4po~x4;l~A"i ~ ~ p~u~ 

An equation for A(t) can be formulated analogously in the case ao<<A<<l, i.e., >i, 
when Lz is determined mainly by the work of the longitudinal force in the cross section 
during elongation of the jet in the bending process, while the work of the internal stress 
moment provides only a correction. To calculate the work of the internal forces in this case 

i' I c('s~ x -i- it is necessary to formulate an asymptotic representation of the integral ~(e,n).:.i 
0 

dz (it is seen at once that it will include i, l/e, 

I / ~  f~  n = = 1 1 2 ; l , ] i ~ , i l ~  ~ f o r n ~ 1 1 2 ) .  

F o r  t h e  n u m e r i c a l  i n t e g r a t i o n  o f  Eq .  ( 1 , 1 2 )  we u s e  t h e  f o l l o w i n g  v a l u e s  o f  t h e  p a r a m e -  
t e r s :  K = i 0  g/cm.  s e c  2 -n ,  p = 1 g / c m  3,  ao  = i 0  - z  cm, Pz = i 0  - s  g / c m  3,  Uo = I 0  3 c m / s e c .  The  
surface tension of the liquid is disregarded; this assumption is not essential. ~e dimen- 
sionless wave number X of the distu~ance is taken equal to 0.667, which for the selected 
values of the parameters corresponds to the wavelength of an ultimately rapidly-growing 

small transverse disturbance of a Newtonian fluid jet X = X, = ~ pzU0 - see (i.13) 

[i, 2]). The results are represented in dimensionless form by the solid curves in Fig. i. 
The disturbance amplitude Hmax = A is referred to its w~elength I = 0.943 cm, and the time 
to the characteristic rise time T = 0.0047 sec of small bending disturbances of a Newtonian 

fluid jet with the selected parameters r:~ ~ , see (i.13) and [I, 2]); Y = in(Hm~). 
Pz Uo 

The calculations according to Eq. (1.12) are carried out up to a value of the disturbance 
amplitude equal to the radius of the jet; for the selected values of the parameters this 
corresponds to Y = --2.24. We investigate cases in which at t = 0 the initial disturbances 
have, in dimensionless form, ~plitudes A = A' = Ao = 5"10 -3 and Ao = 5"10 -6 (the results 
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corresponding to the latter value of Ao are shown in the inset in the lower right-hand cor- 
ner of the figure). The curves are numbered as follows: i) n = 0.5; 2) n = i; 3) n = 1.5; 
these values span the cases of pseudoplastic, Newtonian, and dilatant fluids. 

The initial disturbance amplitude Ao = 5"10-a and hence, the initial strain rate are 
sufficient for the effective viscosity of a pseudoplastic fluid jet not to be too great at 

the initial times: !~ K (D~) n-~ ~- K (A' ~I n-~ 4.74 P. This case corresponds to the rapid 
%] 

growth of bending disturbances in comparison with Newtonian (~ = i0 P) and dilatant (~x = 
21.1 P) fluid jets. 

Actually, the diminution of viscous effects in connection with pseudoplastic fluid be- 
havior brings us closer to a pure inertial solution of Eq. (i.12): A~NAoexp(Tt), 7 = % �9 

o ~ := 0.99,  : - - 5 . 3 ~ - 0 . 9 9 t  ( i n  d i m e n s i o n l e s s  f o r m ) .  
' f r o  

The growth of the exponent n in the rheological relation for a nonlinear viscous liquid 
in the case Ao = 5"10 -3 leads to the enhancement of viscous effects which stabilize the pro- 
cess. For example, in the case of small bending disturbances of a Newtonian fluid jet the 
dimensionless growth rate, according to (1.13), is equal to 0.69, which is the dimensionless 
coordinates of the figure in the case Ao = 5"10 -~ corresponds to the straight line Y = --5.3 
+ 0.69t. Finite bending disturbances of a Newtonianfluid jet grow even more slowly (curve 
2 in Fig. i) as a result of the stabilizing influence of the viscous stresses induced by 
elongation of the jet axis in bending (third term on the left-hand side in (1.12). In a 
dilatant fluid this nonlinear effect is enhanced by the growth of the viscow with the 
strain rate (curve 3 in Fig. i), further slowing the growth of the bending disturbances of 
the jet. Moreover, with an increase in n, the stabilizing influence of the viscous stresses 
associated with elongation of the jet axis sets in earlier, at smaller amplitudes of the 
disturbance waves. 

For a very small initial disturbance (Ao = 5"10 -~) the strain rates are so small at the 
initial times, and the effective viscosity of the pseudoplastic fluid is so great (~ = 150 
P), that the second term on the left-hand side in (1.12) becomes dominant and the growth of 
the bending disturbances is slowed down abruptly (see the inset in Fig. i). In this case, 
increasing n tends to suppress the stabilizing viscous effects, as illustrated by the inset 
in Fig. 1 (for a Newtonian fluid ~ = i0 P, and for a dilatant ~ = 0.669 P). 

2. The analysis of the process of growth of long-wave bending disturbances of nonlinear 
viscous liquid jets for values of the amplitude A > ao can be continued with the application 
of the appropriate asymptotic represent@tion for the case lel >~i. It is expected, however, 
that for sufficiently large disturbances nonlinear effects will produce considerable distor- 
tion of the jet axis and its single-harmonic representation (i.i) used in the energy method 
will yield substantial error. For the calculations in this case, therefore, it is logical 
to use the system of asymptotic quasi-one-dimensional equations for the dynamics of liquid 
jets [i, 3], which is easily generalized to the case of nonlinear viscous liquids. All that 
is required is to replace the expressions for the longitudinal force P and the stress moment 
M in the jet cross section; all other relations and equations remain unchanged. 

Using the rheological relation (1.8), the expressions for the components of the strain- 
rate tensor, and the estimates for the stresses in the jet cross section [i, 3], we obtain 
linear expressions for the stresses and calculate the force P and the projections of M onto 
the normal, binormal, and tangent to the jet axis in the general case of nonplanar bending: 

P = | 3 ~ K 7.-1V~.~ - -  kVn I" sgn ( k - W ~ . ,  - -  kiT.) - -  a.G] f + P,~, 

= (1 + 
n-b1 

- ~ .  - 1  �9 I ~ - ! 1  •  M .  : 3 K n  l ~. V~.,,, -- k V .  (~,-l~,,,,s -~ ki l t  -- 

.+i ( 3 3 ) " 

Mb 3-'g-gnl ~,-aV~. s k V ,  [n-~I ~,-~f~b.~ + X~,~ - -  "~ k~,-~V~ , -? ~ k~V, a k l a  -1 ( t  ~ ~-2_~ ~-3/~ 

(2.1) 

n--1 

M ,  = 3 ~' 'K [ ~,-W,. ,  - -  kV,~ la-~I (2~,-~f~, ,  ~- k~.-IVb., q- k• - -  kg2,,), 
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where u and Q are the velocity of the center of the liquid cross section of the jet and the 
angular velocity of rotation of that cross section, ~ is the torsion of the jet axis, G is 
the double mean curvature of the jet surface, I = ~e4/$ is the moment of inertia of the jet 
cross section, and % is the elongation of the jet axis in nonplanar bending. 

Relations (2.1) have been obtained on the assumption that the velocity of rotation of 
the liquid cross section is small in comparison with the strain rate of that cross section, 
corresponding either to large amplitudes of the bending disturbances (IEI >>i) or to the 
absence of bending, as occurs in the case of capillary decay of rectilinear jets. In the 
latter case Q = O, k = • = 0, % = i, and from (2.1) we obtain the expression used in [5, 6] 
for the longitudinal force in the cross section in calculations based on the quasi-one- 
dimensional equations for the capillary decay of power-law fluid jets. 

We note that within the context of the quasi-one-dimensional approach it is also pos- 
sible to obtain expressions for P and Mcorresponding to the case of very small bending dis- 
turbances (Igl <<i) investigated here by the energy method. Of course, these expressions 
will differ from (2.1), and all other relations and equations of the quasi-one-dimensional 
theory [I, 3] will remain valid. 

The computational algorithm in this case differs from the one used in the calculations 
of Newtonian fluid jets [i] only in the nonlinearity iterations associated with the double- 
sweep (modified Gaussian elimination) process. 

The results of a numerical solution of the quasi-one-dimensional equations for the dy- 
namics of liquid jets, continuing curves 1-3 of Fig. i into the domain of values Y > --2.24 
(A > ao), are represented by the dashed curves. The solutions represented by the solid and 
dashed curves in Fig. 1 match smoothly. This indicates that the approximate energy method 
and the quasi-one-dimensional equations give consistent results. 

The author is grateful to V. M. Entov for interest in the study. 
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